A Hybrid Multi-Objective Crisscross Optimization for Dynamic Economic/Emission Dispatch Considering Plug-In Electric Vehicles Penetration

Author:

Mei Panpan,Wu Lianghong,Zhang Hongqiang,Liu Zhenzu

Abstract

Due to the significant uncertainty of charging time and charging power consumption, the large increase in plug-in electric vehicles (PEVs) may create a major influences on the power system: According to people’s living habits, PEVs are basically charged during peak load periods (after work). Once PEVs continue the random charging behavior, there will be a higher difference of peak-valley and bigger burden on the grid. A new strategy is put forward for dynamic economic/emission dispatch (DEED) with the consideration of PEVs for the purpose to shave the peak and fill the valley in this paper, and the influences brought from different loads of grid-to-vehicle (G2V) and vehicle-to-grid (V2G) on DEED problem are discussed. The problem to be solved is a challenging multi-objective non-linear problem. By taking advantage of the differential evolution (DE) algorithms and a newly developed crisscross optimization algorithm, a new multi-objective hybrid optimization algorithm is put forward to deal with the problem including effectively dealing with the inequality and equality constraints. A case study is presented to show the feasibility and effectiveness of the put forward method. The analysis results demonstrate that the put forward algorithm could effectively solve DEED problem, showing that the resulting approach of peak shaving and valley filling could significantly save economic costs and reduce emissions under the same load.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3