Performance Analysis of a Small-Scale Biogas-Based Trigeneration Plant: An Absorption Refrigeration System Integrated to an Externally Fired Microturbine

Author:

Villarroel-Schneider ,Malmquist ,Araoz ,Martí-Herrero ,Martin

Abstract

Trigeneration or combined cooling, heat and power (CCHP) systems fueled by raw biogas can be an interesting alternative for supplying electricity and thermal services in remote rural areas where biogas can be produced without requiring sophisticated equipment. In this sense, this study considers a performance analysis of a novel small-scale CCHP system where a biogas-fired, 5 kWel externally fired microturbine (EFMT), an absorption refrigeration system (ARS) and heat exchangers are integrated for supplying electricity, refrigeration and hot water demanded by Bolivian small dairy farms. The CCHP solution presents two cases, current and nominal states, in which experimental and design data of the EFMT performance were considered, respectively. The primary energy/exergy rate was used as a performance indicator. The proposed cases show better energy performances than those of reference fossil fuel-based energy solutions (where energy services are produced separately) allowing savings in primary energy utilization of up to 31%. Furthermore, improvements in electric efficiency of the EFMT and coefficient of performance (COP) of the ARS, identified as key variables of the system, allow primary energy savings of up to 37%. However, to achieve these values in real conditions, more research and development of the technologies involved is required, especially for the EFMT.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference71 articles.

1. The Role of Refrigeration in the Global Economy,2015

2. Fact Sheet 5—Industrial Refrigeration,2015

3. Bioenergy systems;Elz;Q. J. Int. Agric.,2007

4. Biomass-fired combined cooling, heating and power for small scale applications – A review

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3