Research on Multi-Objective Optimization and Control Algorithms for Automatic Train Operation

Author:

Liu Kai-weiORCID,Wang Xing-Cheng,Qu Zhi-hui

Abstract

The automatic train operation (ATO) system of urban rail trains includes a two-layer control structure: upper-layer control and lower-layer control. The upper-layer control is to optimize the target speed curve of ATO, and the lower-layer control is the tracking by the urban rail train of the optimal target speed curve generated by the upper-layer control according to the tracking control strategy of ATO. For upper-layer control, the multi-objective model of urban rail train operation is firstly built with energy consumption, comfort, stopping accuracy, and punctuality as optimization indexes, and the entropy weight method is adopted to solve the weight coefficient of each index. Then, genetic algorithm (GA) is used to optimize the model to obtain an optimal target speed curve. In addition, an improved genetic algorithm (IGA) based on directional mutation and gene modification is proposed to improve the convergence speed and optimization effect of the algorithm. The stopping and speed constraints are added into the fitness function in the form of penalty function. For the lower-layer control, the predictive speed controller is designed according to the predictive control principle to track the target speed curve accurately. Since the inflection point area of the target speed curve is difficult to track, the softness factor in the predictive model needs to be adjusted online to improve the control accuracy of the speed. For this paper, we mainly improve the optimization and control algorithms in the upper and lower level controls of ATO. The results show that the speed controller based on predictive control algorithm has better control effect than that based on the PID control algorithm, which can meet the requirements of various performance indexes. Thus, the feasibility of predictive control algorithm in an ATO system is also verified.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3