Reducing the Energy and Steam Consumption of SAGD Through Cyclic Solvent Co-Injection

Author:

Manfre Jaimes DiegoORCID,Gates Ian D.,Clarke Matthew

Abstract

The amount of oil that is contained in the Canadian oil sands represent the third largest oil accumulation in the world. Approximately half of the daily oil production from the oil sands comes from mining processes and the other half is produced mostly using steam assisted gravity drainage (SAGD). This method is effective at reducing the viscosity of the oil. However, the generation of steam requires a significant amount of energy. Thus, there is an ongoing effort to reduce the energy needed to produce oil from the oil sands. In this article the intermittent injection of a solvent, along with steam, is investigated as a means of reducing the amount of energy required to extract oil from the Canadian oil sands. A simulation-based study examined the effect of the type of solvent, the cycles’ duration, the solvent concentration and the number of cycles. The simulations covered a time span of 10 years during which several different solvents (methane, ethane, propane, butane, pentane, hexane, and CO2) were injected under varying injection schedules. The solvents that were investigated are compounds that are likely to be readily available at a heavy oil production site. The solvent injection periods ranged from six to 24 months in length. The results reveal that SAGD combined with intermittent injection of hexane resulted in the most significant improvement to the cumulative oil production and in the cumulative energy-oil ratio (cEOR). Compared to SAGD without solvent injection, the cumulative oil production was increased by 45% and the cEOR was reduced by 23%. It was also seen that the performance of the proposed process is highly dependent on the resulting physical properties of the solvent-bitumen mixture. Finally, a simplified economic analysis also identified SAGD with intermittent hexane injection as the scheme that resulted in the highest net present value. Compared to SAGD without solvent injection, the intermittent injection of hexane led to an 85% increase in the net present value.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference40 articles.

1. U.S. Energy Information Administration (EIA). International Energy Statisticshttps://www.iea.org/statistics/

2. BP Statistical Review of World Energy,2018

3. Steam Assisted Gravity Drainage;Butler,1991

4. A Canadian Perspective On In Situ Combustion

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3