Experimental Study of Crack Propagation in Cracked Concrete

Author:

Wang Siyao,Hu Shaowei

Abstract

The intersection of cracks has an important role in the key technology of hydraulic fracturing for enhancing the recovery of tight hydrocarbon reservoirs. On the basis of digital image correlation technology, three-point bending tests of concrete beams with an edge crack and a central preset crack were conducted to investigate the propagation of cracks after intersection in concretes. Concrete beams with cracks of different positions, lengths, and approach angles were tested, and results were analyzed. In conclusion, the crack positions, crack lengths, and approach angles significantly influence the crack propagation in naturally cracked concrete. A large distance between the crack tip and central point at the preset transverse crack and crack length indicate a high possibility of the edge crack vertically crossing the preset crack. In particular, the crack restarts from the preset crack tip after intersection when the distance between two cracks is smaller than 30 mm and when the preset crack length is smaller than 40 mm. A large approach angle corresponds to a large carrying capacity of the beam and a high possibility of the crack propagating perpendicularly. An improved criterion of restart cracking after interaction is proposed, and the restart points of all tested beams are predicted and compared with the experimental results. A good agreement is observed, which proves that this criterion is reliable.

Funder

National Key Research and Development Project of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference36 articles.

1. Mechanics of hydraulic fracturing;Hubbert;Trans. Soc. Pet. Eng. AIME,1957

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3