A Multisensory, Green, and Energy Efficient Housing Neuromarketing Method

Author:

Kaklauskas ,Ubarte ,Kalibatas ,Lill ,Velykorusova ,Volginas ,Vinogradova ,Milevicius ,Vetloviene ,Grubliauskas ,Bublienė ,Naumcik

Abstract

Green products, clean energy, energy union, green buildings, eco-innovations, environment-related, and similar initiatives and policies have become very popular and widely applied all over the world. A pleasant built environment (parks, flowerbeds, beautiful buildings) and a repulsive environment (noise, polluted surroundings) influence a buyer’s outlook on an advertisement differently. An aesthetic, comfortable, and clean built environment evokes positive emotional states, not only at the time of housing selection and purchase but during the building’s life cycle as well. Potential housing buyers always feel comfortable in certain built environments, and they are inclined to spend more time there. The issues needing answers are how to measure the segmentation/physiological indicators (crowd composition by gender and age groups), as well as the emotional (happy, sad, angry, valence) and physiological (heart rate) states of potential homebuyers realistically, to produce an integrated evaluation of such data and offer buyers rational, green, and energy efficient housing alternatives. To achieve this purpose, the Multisensory, green and energy efficient housing neuromarketing method was developed to generate the necessary conditions. Here, around 200 million multisensory data recordings (emotional and physiological states) were accumulated, and the environmental air pollution (CO, NO2, PM10, volatile organic compounds) and noise pollution were investigated. Specific green and energy efficient building case studies appear in this article to demonstrate the developed method clearly. The obtained research results are in line with those from previous and current studies, which state that the interrelation of environmental responsiveness and age forms an inverse U and that an interest in green and energy efficient housing depends on age.

Funder

European Regional Development Fund

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3