A Two-Layer Component-Based Allocation for Embedded Systems with GPUs

Author:

Campeanu Gabriel,Saadatmand MehrdadORCID

Abstract

Component-based development is a software engineering paradigm that can facilitate the construction of embedded systems and tackle its complexities. The modern embedded systems have more and more demanding requirements. One way to cope with such a versatile and growing set of requirements is to employ heterogeneous processing power, i.e., CPU–GPU architectures. The new CPU–GPU embedded boards deliver an increased performance but also introduce additional complexity and challenges. In this work, we address the component-to-hardware allocation for CPU–GPU embedded systems. The allocation for such systems is much complex due to the increased amount of GPU-related information. For example, while in traditional embedded systems the allocation mechanism may consider only the CPU memory usage of components to find an appropriate allocation scheme, in heterogeneous systems, the GPU memory usage needs also to be taken into account in the allocation process. This paper aims at decreasing the component-to-hardware allocation complexity by introducing a two-layer component-based architecture for heterogeneous embedded systems. The detailed CPU–GPU information of the system is abstracted at a high-layer by compacting connected components into single units that behave as regular components. The allocator, based on the compacted information received from the high-level layer, computes, with a decreased complexity, feasible allocation schemes. In the last part of the paper, the two-layer allocation method is evaluated using an existing embedded system demonstrator; namely, an underwater robot.

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Engineering (miscellaneous)

Reference14 articles.

1. An Extended Model for Multi-Criteria Software Component Allocation on a Heterogeneous Embedded Platform;Svogor;J. Comput. Inf. Technol.,2013

2. Task partitioning upon heterogeneous multiprocessor platforms

3. AUTOSAR—Technical Overview http://www.autosar.org

4. IEC 61131-3: Programming Industrial Automation Systems: Concepts and Programming Languages, Requirements for Programming Systems, Decision-Making Aids;John,2010

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3