Abstract
A key challenge faced by biomimicry practitioners is making the conceptual leap between biology and design, particularly regarding collaborating across these knowledge domains and developing and evaluating design principles abstracted from biology. While many tools and resources to support biomimicry design exist, most largely rely on semantic techniques supporting analogical translation of information between biology and design. However, the challenges of evaluation and collaboration are common in design practice and frequently addressed through prototyping. This study explores the utility of prototyping in the unique context of biomimicry by investigating its impact on the abstraction and transfer of design principles derived from biology as well as on cross-domain collaboration between biologists and designers. Following a survey exploring current practices of practitioners, in depth interviews provided detailed accounts of project experiences that leveraged prototyping. Four primary themes were observed: (1) Approximation; (2) The Prototyping Principle; (3) Synthesis and Testing; and (4) Validation. These themes introduce a unique abstraction and transfer process based on form-finding and collaborative performance evaluation in contrast to the widely accepted semantic language-based approaches. Our findings illustrate how designers and engineers can leverage a prototyping skillset in order to develop boundary objects between the fields of biology and design to navigate challenges uniquely associated with the biomimicry approach.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering,Engineering (miscellaneous)
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献