Adaptive Time-Triggered Multi-Core Architecture

Author:

Obermaisser Roman,Ahmadian Hamidreza,Maleki Adele,Bebawy Yosab,Lenz AlinaORCID,Sorkhpour Babak

Abstract

The static resource allocation in time-triggered systems offers significant benefits for the safety arguments of dependable systems. However, adaptation is a key factor for energy efficiency and fault recovery in Cyber-Physical System (CPS). This paper introduces the Adaptive Time-Triggered Multi-Core Architecture (ATMA), which supports adaptation using multi-schedule graphs while preserving the key properties of time-triggered systems including implicit synchronization, temporal predictability and avoidance of resource conflicts. ATMA is an overall architecture for safety-critical CPS based on a network-on-a-chip with building blocks for context agreement and adaptation. Context information is established in a globally consistent manner, providing the foundation for the temporally aligned switching of schedules in the network interfaces. A meta-scheduling algorithm computes schedule graphs and avoids state explosion with reconvergence horizons for events. For each tile, the relevant part of the schedule graph is efficiently stored using difference encodings and interpreted by the adaptation logic. The architecture was evaluated using an FPGA-based implementation and example scenarios employing adaptation for improved energy efficiency. The evaluation demonstrated the benefits of adaptation while showing the overhead and the trade-off between the degree of adaptation and the memory consumption for multi-schedule graphs.

Funder

Horizon 2020 Framework Programme

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Engineering (miscellaneous)

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Model Comparative Analysis of Neighborhood Aggregation Levels in Graph Neural Networks for Metaschedulers;2024 IEEE International Conference on Industrial Technology (ICIT);2024-03-25

2. Intensification of research work using images processing by application of parallel filtering on multi-core architectures;AIP Conference Proceedings;2024

3. Metascheduling Using Discrete Particle Swarm Optimization for Fault Tolerance in Time-Triggered IoT-WSN;IEEE Internet of Things Journal;2023-07-15

4. Latency-Aware Frequency Scaling in Time-Triggered Network-on-Chip Architecture;2023 7th International Conference on Computing Methodologies and Communication (ICCMC);2023-02-23

5. GNN Link Prediction for Time-Triggered Systems;2023 International Conference on Artificial Intelligence in Information and Communication (ICAIIC);2023-02-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3