A GPS Spoofing Generator Using an Open Sourced Vector Tracking-Based Receiver

Author:

Meng QianORCID,Hsu Li-TaORCID,Xu BingORCID,Luo Xiapu,El-Mowafy Ahmed

Abstract

Spoofing can seriously threaten the use of the Global Positioning System (GPS) in critical applications such as positioning and navigation of autonomous vehicles. Research into spoofing generation will contribute to assessment of the threat of possible spoofing attacks and help in the development of anti-spoofing methods. However, the recent commercial off-the-shelf (COTS) spoofing generators are expensive and the technology implementation is complicated. To address the above problem and promote the GPS safety-critical applications, a spoofing generator using a vector tracking-based software-defined receiver is proposed in this contribution. The spoofing generator aims to modify the raw signals by cancelling the actual signal component and adding the spoofing signal component. The connections between the spreading code and carrier, and the states of the victim receiver are established through vector tracking. The actual signal can be predicted effectively, and the spoofing signal will be generated with the spoofing trajectory at the same time. The experimental test results show that the spoofing attack signal can effectively mislead the victim receiver to the designed trajectory. Neither the tracking channels nor the positioning observations have abnormal changes during this processing period. The recent anti-spoofing methods cannot detect this internal spoofing easily. The proposed spoofing generator can cover all open-sky satellites with a high quality of concealment. With the superiority of programmability and diversity, it is believed that the proposed method based on an open source software-defined receiver has a great value for anti-spoofing research of different GNSS signals.

Funder

Hong Kong Polytechnic University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3