Semantics-Driven Remote Sensing Scene Understanding Framework for Grounded Spatio-Contextual Scene Descriptions

Author:

Potnis Abhishek V.ORCID,Durbha Surya S.,Shinde Rajat C.

Abstract

Earth Observation data possess tremendous potential in understanding the dynamics of our planet. We propose the Semantics-driven Remote Sensing Scene Understanding (Sem-RSSU) framework for rendering comprehensive grounded spatio-contextual scene descriptions for enhanced situational awareness. To minimize the semantic gap for remote-sensing-scene understanding, the framework puts forward the transformation of scenes by using semantic-web technologies to Remote Sensing Scene Knowledge Graphs (RSS-KGs). The knowledge-graph representation of scenes has been formalized through the development of a Remote Sensing Scene Ontology (RSSO)—a core ontology for an inclusive remote-sensing-scene data product. The RSS-KGs are enriched both spatially and contextually, using a deductive reasoner, by mining for implicit spatio-contextual relationships between land-cover classes in the scenes. The Sem-RSSU, at its core, constitutes novel Ontology-driven Spatio-Contextual Triple Aggregation and realization algorithms to transform KGs to render grounded natural language scene descriptions. Considering the significance of scene understanding for informed decision-making from remote sensing scenes during a flood, we selected it as a test scenario, to demonstrate the utility of this framework. In that regard, a contextual domain knowledge encompassing Flood Scene Ontology (FSO) has been developed. Extensive experimental evaluations show promising results, further validating the efficacy of this framework.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3