Experimental and Numerical Evaluation of Solar Receiver Heat Losses of a Commercial 9 MWe Linear Fresnel Power Plant

Author:

Montanet Edouard1,Rodat Sylvain1ORCID,Falcoz Quentin1,Roget Fabien2

Affiliation:

1. Processes, Materials and Solar Energy Laboratory, PROMES-CNRS, 7 Rue du Four Solaire, 66120 Font Romeu, France

2. eLLO Solar Power Plant, Port de Llo, 66800 Llo, France

Abstract

Evaluating the heat losses of linear Fresnel concentrator (LFC) receivers is crucial for determining plant efficiency and managing the flow rate in solar lines. This becomes particularly significant when operating in direct steam generation to manage the steam quality at the line outlet. In general, the LFC receiver heat losses are determined experimentally on prototype systems to control the inlet condition or numerically using 3D computational fluid dynamics models or 1D mathematical models. The originality of this work is in reporting the study of heat losses of a commercial 9 MWe solar Fresnel power plant without impacting its electricity production. The experimentally measured receiver’s linear heat losses were found to be well represented by a second-degree polynomial function of the difference between the inlet/outlet fluid temperature average and the ambient temperature. Finally, to express the strong influence of wind speed on the receiver heat losses, a 1D single-phase model was developed and adapted to include the current receiver degradation. To conclude, the model was validated by comparing the experimental and theoretical results. Based on this comparison, it can be concluded that the model accurately predicts experimental heat losses with an acceptable uncertainty of ±30%, regardless of the wind velocity.

Funder

National Research Agency

National Agency for Technological Research

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3