Electromagnetic Vibration Analysis of Transverse Flux Permanent Magnet Linear Submersible Motor for Oil Production

Author:

Zhao Mei1,Li Yihao1,Zuo Sicheng1,Tang Pingpeng2,Yao Tong1,Zhang Huaqiang1,Wu Shunjie3

Affiliation:

1. College of New Energy, Harbin Institute of Technology (Weihai), Weihai 264209, China

2. School of Ocean Engineering, Harbin Institute of Technology (Weihai), Weihai 264209, China

3. Testing Technique Research Institute, Yichang 443000, China

Abstract

A transverse flux linear motor is a special type of linear motor with a high thrust force density, and it has broad application prospects in the field of linear direct-drive systems. In the process of oil production, the vibration of the linear motor poses a significant amount of harm to the system due to its special slender structure. This paper focuses on the electromagnetic vibration of a transverse flux permanent magnet linear submersible motor (TFPMLSM). Firstly, the no-load air gap flux density is calculated based on the field modulation principle. Secondly, the radial electromagnetic force (REF) of the TFPMLSM is calculated, and the finite element method (FEM) is used to analyze the time-space and spectral characteristics of the REF. Then, the influence of secondary eccentricity on the frequency spectrum of the REF is further concluded. Finally, the natural frequencies of each vibration mode are calculated using the modal superposition method and the influence of the REF on the motor vibration is obtained through magnetic-structural coupling analysis. The research results found that the motor does not cause resonance at low speeds, and the fundamental frequency of REF has the greatest impact on electromagnetic vibration.

Funder

National Natural Science Foundation of China

Key Laboratory of Special Machine and High Voltage Apparatus (Shenyang University of Technology), Ministry of Education

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3