Measuring and Modeling the Skin Effect for Harmonic Power Flow Studies

Author:

Silvério Eduardo Tavares1,Macedo Junior Jose Rubens1

Affiliation:

1. Faculty of Electrical Engineering, Federal University of Uberlandia, Uberlandia 38408-100, Brazil

Abstract

This research aims to quantify the skin effect and estimate expressions that well represent the phenomenon for harmonic power flow studies. The primary focus is to validate the behavior of the skin effect at harmonic frequencies ranging from 60 Hz to 960 Hz, while considering various amplitudes of electric current. The investigation not only examines the measurement of the skin effect, but also considers the temperature of the tested conductors, aiming to analyze the increase in resistance resulting from temperature rise and resistivity changes. The measurement outcomes demonstrate notable increments in electrical resistance, with resistivity increases of up to 1.9% observed throughout the measurement process. Finally, based on the results obtained through laboratory measurements, mathematical expressions were estimated as a function of frequency. In order to evaluate the simulation time reduction by the proposed expressions, OpenDSS (version: 9.4.1.2; Electric Power Research Institute, Knoxville, TN, USA) software was used, which aims at quantifying the impact of the skin effect on the technical losses. The results from these simulations demonstrate that the proposed expressions to account for the skin effect in conductors reduce the simulation time by around 17% for harmonic power flow.

Funder

Coordination of Superior Level Staff Improvement and National Electrical Energy Agency

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference29 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Full-state feedback LQR with integral gain for control of induction heating of steel billet;Engineering Science and Technology, an International Journal;2024-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3