BrainGAN: Brain MRI Image Generation and Classification Framework Using GAN Architectures and CNN Models

Author:

Alrashedy Halima Hamid N.,Almansour Atheer Fahad,Ibrahim Dina M.ORCID,Hammoudeh Mohammad Ali A.ORCID

Abstract

Deep learning models have been used in several domains, however, adjusting is still required to be applied in sensitive areas such as medical imaging. As the use of technology in the medical domain is needed because of the time limit, the level of accuracy assures trustworthiness. Because of privacy concerns, machine learning applications in the medical field are unable to use medical data. For example, the lack of brain MRI images makes it difficult to classify brain tumors using image-based classification. The solution to this challenge was achieved through the application of Generative Adversarial Network (GAN)-based augmentation techniques. Deep Convolutional GAN (DCGAN) and Vanilla GAN are two examples of GAN architectures used for image generation. In this paper, a framework, denoted as BrainGAN, for generating and classifying brain MRI images using GAN architectures and deep learning models was proposed. Consequently, this study proposed an automatic way to check that generated images are satisfactory. It uses three models: CNN, MobileNetV2, and ResNet152V2. Training the deep transfer models with images made by Vanilla GAN and DCGAN, and then evaluating their performance on a test set composed of real brain MRI images. From the results of the experiment, it was found that the ResNet152V2 model outperformed the other two models. The ResNet152V2 achieved 99.09% accuracy, 99.12% precision, 99.08% recall, 99.51% area under the curve (AUC), and 0.196 loss based on the brain MRI images generated by DCGAN architecture.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference38 articles.

1. Generative adversarial nets;Goodfellow;Adv. Neural Inf. Process. Syst.,2014

2. Classification of Brain MRI Tumor Images: A Hybrid Approach

3. Classification of Brain MRI Tumor Images Based on Deep Learning PGGAN Augmentation

4. Cancer bioinformatics: A new approach to systems clinical medicine

5. Brain MRI Segmentation https://www.kaggle.com/mateuszbuda/lgg-mri-segmentation

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3