Efficient Polar Coded Selective Decode-and-Forward with Cooperative Decision Threshold in Cooperative Multi-Relay Transmissions

Author:

Jiang BinORCID,Tang YueORCID,Bao JianrongORCID,Liu ChaoORCID,Shang YanhaiORCID

Abstract

In some satellite Internet of Things (IoT) devices with terrain shielding, the qualities of the direct source-destination (S-D) channel are poor, requiring cooperative communications with multi-relays to be employed. In order to solve error propagation of current decode-and-forward (DF) on such occasions, an efficient polar coded selective decode-and-forward (SDF) cooperation method is proposed with a new decision threshold derived from channel state information (CSI). First, the proposed threshold is derived from the CSI by exploiting the channel gain ratio of optimal relay-destination link (R-D) with source-relay (S-R) link. The above R-D link possesses good channel quality among all links in the system. Second, when the channel gain ratio of certain relay links is larger than the aforementioned decision threshold, the source and all these relays cooperatively send messages together to the destination to accomplish perfect SDF transmission. Otherwise, all relays are frozen and the messages are directly transmitted through the S-D link. If it fails anyway, a retransmission is subsequently tried in the next transmission cycle. In addition, a polar code for fading channels is designed and adaptively adjusted to a proper code rate according to channel quality to attain good bit error rate (BER) performance. Simulation results show that the proposed scheme achieves about 0.9 and 0.5 dB gain at BER of 10−4, respectively, in multi-relay cooperative communications with multi-path fading channels compared with those of non-cooperation and existing polar coded cooperation channels. Therefore, the proposed polar coded SDF (PCSDF) scheme can improve both the BER and the outage probability (OP) performance in multi-relay cooperative systems, making it quite suitable for heterogeneous network applications in cooperative satellite IoT systems involving sixth-generation (6G) communications.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Provincial Universities of Zhejiang

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3