Is Smiling the Key? Machine Learning Analytics Detect Subtle Patterns in Micro-Expressions of Infants with ASD

Author:

Alvari GianpaoloORCID,Furlanello CesareORCID,Venuti PaolaORCID

Abstract

Time is a key factor to consider in Autism Spectrum Disorder. Detecting the condition as early as possible is crucial in terms of treatment success. Despite advances in the literature, it is still difficult to identify early markers able to effectively forecast the manifestation of symptoms. Artificial intelligence (AI) provides effective alternatives for behavior screening. To this end, we investigated facial expressions in 18 autistic and 15 typical infants during their first ecological interactions, between 6 and 12 months of age. We employed Openface, an AI-based software designed to systematically analyze facial micro-movements in images in order to extract the subtle dynamics of Social Smiles in unconstrained Home Videos. Reduced frequency and activation intensity of Social Smiles was computed for children with autism. Machine Learning models enabled us to map facial behavior consistently, exposing early differences hardly detectable by non-expert naked eye. This outcome contributes to enhancing the potential of AI as a supportive tool for the clinical framework.

Publisher

MDPI AG

Subject

General Medicine

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Review on Autism Spectrum Disorder Screening by Artificial Intelligence Methods;Journal of Autism and Developmental Disorders;2024-06-06

2. Large-scale Validation of a Scalable and Portable Behavioral Digital Screening Tool for Autism at Home;Extended Abstracts of the CHI Conference on Human Factors in Computing Systems;2024-05-02

3. A review of machine learning-based methods for automatically detecting autism spectrum disorder in children's faces;2023 2nd International Engineering Conference on Electrical, Energy, and Artificial Intelligence (EICEEAI);2023-12-27

4. Public mental health through social media in the post COVID-19 era;Frontiers in Public Health;2023-12-11

5. Systematic bibliometric and visualized analysis of research hotspots and trends in artificial intelligence in autism spectrum disorder;Frontiers in Neuroinformatics;2023-12-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3