Comparative Study of Microstructural Characteristics and Hardness of β-Quenched Zr702 and Zr–2.5Nb Alloys

Author:

Dai Jiahong,Guan Haotian,Chai LinjiangORCID,Xiang Kang,Zhu Yufan,Qiu Risheng,Guo Ning,Liu Yuanzhuo

Abstract

In this study, two commercial Zr alloys (Zr702 and Zr–2.5Nb) were subjected to the same β-quenching treatment (water cooling after annealing at 1000 °C for 10 min). Their microstructural characteristics and hardness before and after the heat treatment were well characterized and compared by electron channel contrast (ECC) imaging, electron backscatter diffraction (EBSD) techniques, and microhardness measurements. Results show that after the β quenching, prior equiaxed grains in Zr702 are transformed into Widmanstätten plate structures (the average width ~0.8 μm) with many fine precipitates distributed along their boundaries, while the initial dual-phase (α + β) microstructure in Zr–2.5Nb is fully replaced by fine twinned martensitic plates (the average width ~0.31 μm). Differences in alloying elements (especially Nb) between Zr702 and Zr–2.5Nb are demonstrated to play a key role in determining their phase transformation behaviors during the β quenching. Analyses on crystallographic orientations show that the Burgers orientation relationship is well obeyed in both the alloys with misorientation angles between α plates essentially focused on ~60°. After β quenching, the hardnesses of both alloys were increased by ~35%–40%. Quantitative analyses using the Hall–Petch equation suggest that such an increase was mainly attributable to phase transformation-induced grain refinements. Since Nb is able to effectively refine the β-quenched structures, a higher hardness increment is produced in Zr–2.5Nb than in Zr702.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3