Abstract
“Tube beams” are common lightweight structures, which have domestic and industry applications, and are often subjected to complex multidirectional loads. Therefore, metals with mature manufacturing methods and isotropic properties are commonly used in the fabrication of these structures, which are preferred to be lighter in weight. Although polymer matrix composites are generally used for weight reduction, their conventional manufacturing methods, such as pultrusion and filament-winding, cannot meet the isotropic requirements. Moreover, research on bent tube beams (elbows) is rare. Therefore, a self-made glass fiber/epoxy polyvinyl ester fabric prepreg and a self-designed mold were used in this study to prepare an isotropic composite double-bent elbow by a silicone rubber airbag-assisted process. The load capacity of the elbow was tested and validated by the finite element method. A strength and deformation of up to 3448 N and 2.84 mm respectively, were achieved. The simulation and experimental results were consistent: the error for the load capacity and deformation was only 4.15% and 7.75% respectively, under the max stress criterion.
Subject
General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献