Linking Error in the 2PL Model

Author:

Robitzsch AlexanderORCID

Abstract

The two-parameter logistic (2PL) item response model is likely the most frequently applied item response model for analyzing dichotomous data. Linking errors quantify the variability in means or standard deviations due to the choice of items. Previous research presented analytical work for linking errors in the one-parameter logistic model. In this article, we present linking errors for the 2PL model using the general theory of M-estimation. Linking errors are derived in the case of log-mean-mean linking for linking two groups. The performance of the newly proposed formulas is evaluated in a simulation study. Furthermore, the linking error estimation in the 2PL model is also treated in more complex settings, such as chain linking, trend estimation, fixed item parameter calibration, and concurrent calibration.

Publisher

MDPI AG

Subject

Psychiatry and Mental health

Reference64 articles.

1. Chen, Y., Li, X., Liu, J., and Ying, Z. (2021). Item response theory—A statistical framework for educational and psychological measurement. arXiv.

2. van der Linden, W.J. (2016). Handbook of Item Response Theory, Volume 1: Models, CRC Press.

3. Rutkowski, L., von Davier, M., and Rutkowski, D. (2013). A Handbook of International Large-Scale Assessment: Background, Technical Issues, and Methods of Data Analysis, CRC Press.

4. OECD (2020). PISA 2018. Technical Report, OECD.

5. Brennan, R.L. (2006). Educational Measurement, Praeger Publishers.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Generally Applicable Variance Estimation Methods for Common-Population Linking;Journal of Educational and Behavioral Statistics;2024-08-08

2. An Examination of the Linking Error Currently Used in PISA;Measurement: Interdisciplinary Research and Perspectives;2024-01-02

3. Comparing different trend estimation approaches in country means and standard deviations in international large-scale assessment studies;Large-scale Assessments in Education;2023-07-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3