Temporal Activity Patterns of Sympatric Species in the Temperate Coniferous Forests of the Eastern Qinghai-Tibet Plateau

Author:

Jia Jia12,Fang Yun1,Li Xinhai12ORCID,Song Kai1,Xie Wendong12ORCID,Bu Changli12,Sun Yuehua1

Affiliation:

1. Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Temporal niche partitioning is an important strategy for sympatric species or populations when utilizing limited resources while minimizing competition. Different resource availability across seasons may also influence the intensity of competition, resulting in a varied temporal niche partitioning pattern between species. These competitive interactions are important drivers for the formation of biodiversity patterns and species coexistence on the eastern Qinghai-Tibet Plateau. To clarify these interspecies relationships among sympatric species, we carried out a camera trap survey from 2017 to 2020. We deployed 60 camera traps in the temperate coniferous forests of the eastern Qinghai-Tibet Plateau. We analyzed the daily activity patterns of birds and mammals to reveal the temporal niches and seasonal relationships among the species-specific activity rhythms. The results are summarized as follows: (1) Eight major species, including mammals and birds, have different temporal peak activity rhythms to reduce intense competition for resources. (2) The activity rhythm of a species varies seasonally, and the competition among species is more intense in the warm season than in the cold season. (3) Among 15 pairs of competitor species, seven pairs had significantly different coefficients, with higher winter values than summer values, perhaps due to the abundance of resources in summer and the scarcity of resources in winter causing intensified competition. Among the predators and prey, the summertime coefficients were higher than those in winter, perhaps due to the need to replenish energy during the summer breeding season. The main purpose of animals in winter is to survive the harsh environment. Our results provide important information on temporal and interspecies relationships and contribute to a better understanding of species-coexistence mechanisms.

Funder

Biodiversity Investigation, Observation and Evaluation Project of Ministry of Ecology and Environment

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3