Abstract
Stem lodging is the bending or breakage of stems in the wind that result in negative economic impacts to producers and processors of small grain crops. To address this issue, plant breeders attempt to quantify lodging using proxy traits such as stem structure and biomechanics. Stem lodging is a function of both stem strength and elasticity. In this paper, we explore the biomechanics of stems approaching the lodging, or permanent bending, condition. Oat, wheat, and two types of barley varying in lodging resistance were exposed to standard growing conditions over the course of a season. Their capability of returning from a bent to unbent state was characterized using a push force meter that measured resistant force and displacement over time. Changes in stem energy and power were then calculated using displacement and force measurements. Lodging susceptibility could be differentiated by stem strength, displacement and change in power measurements depending on small grain species without damaging the plant. These measurements could be used by small cereal grain breeding programs as proxy traits to determine lodging susceptibility without destructively testing or waiting for storm events, thus saving time and resources.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献