PreNNsem: A Heterogeneous Ensemble Learning Framework for Vulnerability Detection in Software

Author:

Wang LuORCID,Li Xin,Wang RuihengORCID,Xin Yang,Gao Mingcheng,Chen Yulin

Abstract

Automated vulnerability detection is one of the critical issues in the realm of software security. Existing solutions to this problem are mostly based on features that are defined by human experts and directly lead to missed potential vulnerability. Deep learning is an effective method for automating the extraction of vulnerability characteristics. Our paper proposes intelligent and automated vulnerability detection while using deep representation learning and heterogeneous ensemble learning. Firstly, we transform sample data from source code by removing segments that are unrelated to the vulnerability in order to reduce code analysis and improve detection efficiency in our experiments. Secondly, we represent the sample data as real vectors by pre-training on the corpus and maintaining its semantic information. Thirdly, the vectors are fed to a deep learning model to obtain the features of vulnerability. Lastly, we train a heterogeneous ensemble classifier. We analyze the effectiveness and resource consumption of different network models, pre-training methods, classifiers, and vulnerabilities separately in order to evaluate the detection method. We also compare our approach with some well-known vulnerability detection commercial tools and academic methods. The experimental results show that our proposed method provides improvements in false positive rate, false negative rate, precision, recall, and F1 score.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference50 articles.

1. CVEhttp://cve.mitre.org

2. Flawfinderhttps://dwheeler.com/flawfinder/

3. RIPShttp://rips-scanner.sourceforge.net

4. Cppcheckhttps://sourceforge.net/projects/cppcheck

5. Coverityhttp://www.coverity.com/index.html

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3