Abstract
Automated vulnerability detection is one of the critical issues in the realm of software security. Existing solutions to this problem are mostly based on features that are defined by human experts and directly lead to missed potential vulnerability. Deep learning is an effective method for automating the extraction of vulnerability characteristics. Our paper proposes intelligent and automated vulnerability detection while using deep representation learning and heterogeneous ensemble learning. Firstly, we transform sample data from source code by removing segments that are unrelated to the vulnerability in order to reduce code analysis and improve detection efficiency in our experiments. Secondly, we represent the sample data as real vectors by pre-training on the corpus and maintaining its semantic information. Thirdly, the vectors are fed to a deep learning model to obtain the features of vulnerability. Lastly, we train a heterogeneous ensemble classifier. We analyze the effectiveness and resource consumption of different network models, pre-training methods, classifiers, and vulnerabilities separately in order to evaluate the detection method. We also compare our approach with some well-known vulnerability detection commercial tools and academic methods. The experimental results show that our proposed method provides improvements in false positive rate, false negative rate, precision, recall, and F1 score.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference50 articles.
1. CVEhttp://cve.mitre.org
2. Flawfinderhttps://dwheeler.com/flawfinder/
3. RIPShttp://rips-scanner.sourceforge.net
4. Cppcheckhttps://sourceforge.net/projects/cppcheck
5. Coverityhttp://www.coverity.com/index.html
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献