Author:
Zhu Zhenshan,Ju Yaping,Zhang Chuhua
Abstract
Obstructive sleep apnea-hypopnea syndrome (OSAHS) is a highly prevalent respiratory disorder. The knowledge of respiratory flow is an essential prerequisite for the establishment and development of OSAHS physiology, pathology, and clinical medicine. We made the first in-vitro experimental attempt to measure the oscillatory flow velocity in a computed tomography (CT) scanned extra-thoracic airway (ETA) model with OSAHS by using the particle image velocimetry (PIV) technique. In order to mimic respiration flow, three techniques were adopted to address difficulties in in-vitro experimental modeling: (1) fabricating the obstructive ETA measurement section with the CT-scanned data of an OSAHS patient airway; (2) maintaining the measurement accuracy by using the optical index-matching technique; (3) reproducing the oscillatory respiratory flow rates with the compiled clinical data of transient tidal volumes. The in-vitro measurements of oscillatory respiratory flow velocity manifested the time evolution of the complex OSAHS flow patterns, and the potential wall collapse of the ETA model with OSAHS.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献