A Novel Device for Micro-Droplets Generation Based on the Stepwise Membrane Emulsification Principle

Author:

Lei Lei12ORCID,Achenbach Sven3ORCID,Wells Garth4,Zhang Hongbo5ORCID,Zhang Wenjun2ORCID

Affiliation:

1. School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China

2. Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada

3. Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada

4. Synchrotron Laboratory for Micro and Nano Devices, Canadian Light Source Incorporated, Saskatoon, SK S7N 2V3, Canada

5. School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 201620, China

Abstract

This paper presents a novel design of the device to generate microspheres or micro-droplets based on the membrane emulsification principle. Specifically, the novelty of the device lies in a proposed two-layer or stepwise (by generalization) membrane structure. An important benefit of the stepwise membrane is that it can be fabricated with the low-cost material (SU-8) and using the conventional lithography technology along with a conventional image-based alignment technique. The experiment to examine the effectiveness of the proposed membrane was conducted, and the result shows that microspheres with the size of 2.3 μm and with the size uniformity of 0.8 μm can be achieved, which meets the requirements for most applications in industries. It is noted that the traditional membrane emulsification method can only produce microspheres of around 20 μm. The main contribution of this paper is thus the new design principle of membranes (i.e., stepwise structure), which can be made by the cost-effective fabrication technique, for high performance of droplets production.

Funder

National Natural Science Foundation of China

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Reference34 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3