Time-Series Power Forecasting for Wind and Solar Energy Based on the SL-Transformer

Author:

Zhu Jian1,Zhao Zhiyuan1,Zheng Xiaoran1,An Zhao23,Guo Qingwu1,Li Zhikai1,Sun Jianling1,Guo Yuanjun2ORCID

Affiliation:

1. SPIC Integrated Smart Energy Technology Co., Ltd., Beijing 100080, China

2. Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

3. Guangdong Institute of Carbon Neutrality (Shaoguan), Shaoguan 512000, China

Abstract

As the urgency to adopt renewable energy sources escalates, so does the need for accurate forecasting of power output, particularly for wind and solar power. Existing models often struggle with noise and temporal intricacies, necessitating more robust solutions. In response, our study presents the SL-Transformer, a novel method rooted in the deep learning paradigm tailored for green energy power forecasting. To ensure a reliable basis for further analysis and modeling, free from noise and outliers, we employed the SG filter and LOF algorithm for data cleansing. Moreover, we incorporated a self-attention mechanism, enhancing the model’s ability to discern and dynamically fine-tune input data weights. When benchmarked against other premier deep learning models, the SL-Transformer distinctly outperforms them. Notably, it achieves a near-perfect R2 value of 0.9989 and a significantly low SMAPE of 5.8507% in wind power predictions. For solar energy forecasting, the SL-Transformer has achieved a SMAPE of 4.2156%, signifying a commendable improvement of 15% over competing models. The experimental results demonstrate the efficacy of the SL-Transformer in wind and solar energy forecasting.

Funder

Shenzhen International Cooperation Project

Science and Technology project of Tianjin, China

Shenzhen Science and Technology Plan, Sustainable Development Technology Special Project

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3