Optimal Siting and Sizing of Hydrogen Production Modules in Distribution Networks with Photovoltaic Uncertainties

Author:

Li Zhiyong1,Wu Wenbin2,Si Yang2ORCID,Chen Xiaotao2

Affiliation:

1. Department of Computer Technology and Application, Qinghai University, Xining 810016, China

2. Qinghai Key Lab of Efficient Utilization of Clean Energy, School of Energy and Electrical Engineering, University of Qinghai, Xining 810016, China

Abstract

Hydrogen production modules (HPMs) play a crucial role in harnessing abundant photovoltaic power by producing and supplying hydrogen to factories, resulting in significant operational cost reductions and efficient utilization of the photovoltaic panel output. However, the output of photovoltaic power is stochastic, which will affect the revenue of investing in an HPM. This paper presents a comprehensive analysis of HPMs, starting with the modeling of their operational process and investigating their influence on distribution system operations. Building upon these discussions, a deterministic optimization model is established to address the corresponding challenges. Furthermore, a two-stage stochastic planning model is proposed to determine optimal locations and sizes of HPMs in distribution systems, accounting for uncertainties. The objective of the two-stage stochastic planning model is to minimize the distribution system’s operational costs plus the investment costs of the HPM subject to power flow constraints. To tackle the stochastic nature of photovoltaic power, a data-driven algorithm is introduced to cluster historical data into representative scenarios, effectively reducing the planning model’s scale. To ensure an efficient solution, a Benders’ decomposition-based algorithm is proposed, which is an iterative method with a fast convergence speed. The proposed model and algorithms are validated using a widely utilized IEEE 33-bus system through numerical experiments, demonstrating the optimality of the HPM plan generated by the algorithm. The proposed model and algorithms offer an effective approach for decision-makers in managing uncertainties and optimizing HPM deployment, paving the way for sustainable and efficient energy solutions in distribution systems. Sensitivity analysis verifies the optimality of the HPM’s siting and sizing obtained by the proposed algorithm, which also reveals immense economic and environmental benefits.

Funder

Science and Technology Department of Qinghai Province

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3