Refining the Selection of Historical Period in Analog Ensemble Technique

Author:

del Pozo Federico E.123ORCID,Kim Chang Ki12,Kim Hyun-Goo12ORCID

Affiliation:

1. Korea Institute of Energy Research, Daejeon 34129, Republic of Korea

2. Energy Engineering, University of Science and Technology, Daejeon 34113, Republic of Korea

3. Department of Science and Technology, Industrial Technology Development Institute, Taguig 1631, Philippines

Abstract

A precise estimate of solar energy output is essential for its efficient integration into the power grid as solar energy becomes a more significant renewable energy source. Contrarily, the creation of solar energy involves fluctuation and uncertainty. The integration and operation of energy systems are complicated by the uncertainty in solar energy projection. As a post-processing technique to lower systematic and random errors in the operational meteorological forecast model, the analog ensemble algorithm will be introduced in this study. When determining the appropriate historical and predictive data required to use the approach, an optimization is conducted for the historical period in order to further maximize the capabilities of the analog ensemble. To determine statistical consistency and spread skill, the model is evaluated against both the raw forecast model and observations. The outcome lowers the uncertainty in the predicted data by demonstrating that statistical findings improve significantly even with 1-month historical data. Nevertheless, the optimization with a year’s worth of historical data demonstrates a notable decrease in the outcomes, limiting overestimation and lowering uncertainty. Specifically, analog ensemble algorithms calibrate analog forecasts that are equivalent to the latest target forecasts within a set of previous deterministic forecasts. Overall, we conclude that analog ensembles assuming a 1-year historical period offer a comprehensive method to minimizing uncertainty and that they should be carefully assessed given the specific forecasting aims and limits.

Funder

Korea Institute of Energy Research

Korea Institute of Energy Technology Evaluation and Planning

Korean Government

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3