Calculation of Transmission Line Worker Electric Field Induced Current Using Fourier-Enhanced Charge Simulation

Author:

Leman Jon T.1ORCID,Olsen Robert G.2ORCID,Renew David3

Affiliation:

1. Electric Utility Design Tools, Kendrick, ID 83537, USA

2. School of Electrical Engineering & Computer Science, Washington State University, EECS, Pullman, WA 99163, USA

3. EMF Scientific, Ashtead KT21 2TP, UK

Abstract

Exposure to quasi-electrostatic field induced currents is a hazard of live-line transmission work. These steady-state induced currents are typically less than 1 mA, and their sensory effects range from imperceptible to painful depending on the person and conditions such as contact area and duration. Permanent injury from these currents is unlikely but they can distract workers, increasing the risk of injury from falls or other dangers. Identifying contact current severity and training workers can help reduce the risk of accidents. Measuring induced currents along a climbing route is time-consuming and simulation is challenging because of the geometric complexity of the worker, the transmission structure, conductor bundles, and electric fields in the climbing space. This research explores the suitability of a recently published adaptation of the charge simulation method for calculating worker-induced currents. The method uses Fourier principles to improve computational efficiency while explicitly modeling all bundle subconductors. The research also examines simplifications for modeling lattice structures and human geometry. Calculated currents compare well to measurements for a worker climbing a 400 kV lattice structure. This indicates the method is a practical option for calculating steady-state contact current severity. A simple calculation is suggested for estimating these currents.

Funder

EPRI

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3