Repurposing End-of-Life Coal Mines with Business Models Based on Renewable Energy and Circular Economy Technologies

Author:

Krzemień Alicja1,Frejowski Aleksander1ORCID,Fidalgo Valverde Gregorio2ORCID,Riesgo Fernández Pedro2ORCID,Garcia-Cortes Silverio3ORCID

Affiliation:

1. Department of Extraction Technologies, Rockburst and Risk Assessment, Central Mining Institute—National Research Institute, 40166 Katowice, Poland

2. School of Mining, Energy and Materials Engineering, University of Oviedo, 33004 Oviedo, Spain

3. Polytechnic School of Mieres, University of Oviedo, 33600 Mieres, Spain

Abstract

This paper presents a methodology to select the most exciting business models based on renewable energy and circular economy technologies within end-of-life coal mines to help develop a renewable-based energy sector, promote sustainable local economic growth, and maximise the number of green and quality jobs. To achieve this goal, first, a structural analysis was developed to select the technical variables that better identify this complex system. Second, a morphological analysis allowed the construction of the scenario space. Third, a multicriteria assessment was developed to achieve this goal, based on the previously assessed relevant scenarios, considering the European Green Deal policies, technical variables that characterise end-of-life coal mine environments, technology readiness level, the European taxonomy, synergistic potentials, contributions to the circular economy, and sector coupling. Finally, result indicators were selected to analyse the alternative options derived from the justification approach, considering the targets set by the European Green Deal and related taxonomy and the regional policy indicators for the Just Transition Fund. The results show that eco-industrial parks with virtual power plants represent the most appropriate business model choice, according to the scoring given to the different aspects. They may be complemented by a hydrogen production plant, provided that specific economic subventions are obtained to achieve balanced financial results.

Funder

Research Fund for Coal and Steel (RFCS), the European Commission

Polish Ministry of Education and Science

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3