Abstract
The concept of transporting medical products by drone is gaining a lot of interest amongst the medical and logistics communities. Such innovation has generated several questions, a key one being the potential effects of flight on the stability of medical products. The aims of this study were to quantify the vibration present within drone flight, study its effect on the quality of the medical insulin through live flight trials, and compare the effects of vibration from drone flight with traditional road transport. Three trials took place in which insulin ampoules and mock blood stocks were transported to site and flown using industry standard packaging by a fixed-wing or a multi-copter drone. Triaxial vibration measurements were acquired, both in-flight and during road transit, from which overall levels and frequency spectra were derived. British Pharmacopeia quality tests were undertaken in which the UV spectra of the flown insulin samples were compared to controls of known turbidity. In-flight vibration levels in both the drone types exceeded road induced levels by up to a factor of three, and predominant vibration occurred at significantly higher frequencies. Flown samples gave clear insulin solutions that met the British Pharmacopoeia specification, and no aggregation of insulin was detected.
Funder
Engineering and Physical Sciences Research Council
Subject
Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献