Abstract
Starting from the Martian environment, we examine all the necessary requirements for a UAV and outline the architecture of a gyroplane optimized for scientific research and support for (future) Mars explorers, highlighting its advantages and criticalities. After a careful trade-off between different vehicles suitable for a typical mission, some parameters are established to optimize the size and performance. In the second part, the project of the Spider gyroplane and the methodology used to balance the longitudinal masses are presented; in the third part, the parameters of the aerodynamic forces acting on the aircraft are highlighted to be able to focus them during the fluid dynamics simulations.
Subject
Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献