Automated Drone Detection Using YOLOv4

Author:

Singha Subroto,Aydin Burchan

Abstract

Drones are increasing in popularity and are reaching the public faster than ever before. Consequently, the chances of a drone being misused are multiplying. Automated drone detection is necessary to prevent unauthorized and unwanted drone interventions. In this research, we designed an automated drone detection system using YOLOv4. The model was trained using drone and bird datasets. We then evaluated the trained YOLOv4 model on the testing dataset, using mean average precision (mAP), frames per second (FPS), precision, recall, and F1-score as evaluation parameters. We next collected our own two types of drone videos, performed drone detections, and calculated the FPS to identify the speed of detection at three altitudes. Our methodology showed better performance than what has been found in previous similar studies, achieving a mAP of 74.36%, precision of 0.95, recall of 0.68, and F1-score of 0.79. For video detection, we achieved an FPS of 20.5 on the DJI Phantom III and an FPS of 19.0 on the DJI Mavic Pro.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. VDTNet: A High-Performance Visual Network for Detecting and Tracking of Intruding Drones;IEEE Transactions on Intelligent Transportation Systems;2024-08

2. Digital twin of multi-model drone detection system on Airsim for RF and vision modalities;Turkish Journal of Engineering;2024-07-28

3. Improved Real Time Printed Circuit Board Fault Detection;2024 International Conference on Circuit, Systems and Communication (ICCSC);2024-06-28

4. Metal Structural Defect Detection Based-On Deep Learning and Grad-Cam;2024 International Conference on Circuit, Systems and Communication (ICCSC);2024-06-28

5. Real-Time Waste Detection Based on YOLOv8;2024 4th Interdisciplinary Conference on Electrics and Computer (INTCEC);2024-06-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3