Leaf-Off and Leaf-On UAV LiDAR Surveys for Single-Tree Inventory in Forest Plantations

Author:

Lin Yi-ChunORCID,Liu Jidong,Fei SonglinORCID,Habib AymanORCID

Abstract

LiDAR technology has been proven to be an effective remote sensing technique for forest inventory and management. Among existing remote sensing platforms, unmanned aerial vehicles (UAV) are rapidly gaining popularity for their capability to provide high-resolution and accurate point clouds. However, the ability of a UAV LiDAR survey to map under canopy features is determined by the degree of penetration, which in turn depends on the percentage of canopy cover. In this study, a custom-built UAV-based mobile mapping system is used for simultaneously collecting LiDAR and imagery data under different leaf cover scenarios in a forest plantation. Bare earth point cloud, digital terrain model (DTM), normalized height point cloud, and quantitative measures for single-tree inventory are derived from UAV LiDAR data. The impact of different leaf cover scenarios (leaf-off, partial leaf cover, and full leaf cover) on the quality of the products from UAV surveys is investigated. Moreover, a bottom-up individual tree localization and segmentation approach based on 2D peak detection and Voronoi diagram is proposed and compared against an existing density-based clustering algorithm. Experimental results show that point clouds from different leaf cover scenarios are in good agreement within a 1-to-10 cm range. Despite the point density of bare earth point cloud under leaf-on conditions being substantially lower than that under leaf-off conditions, the terrain models derived from the three scenarios are comparable. Once the quality of the DTMs is verified, normalized height point clouds that characterize the vertical forest structure can be generated by removing the terrain effect. Individual tree detection with an overall accuracy of 0.98 and 0.88 is achieved under leaf-off and partial leaf cover conditions, respectively. Both the proposed tree localization approach and the density-based clustering algorithm cannot detect tree trunks under full leaf cover conditions. Overall, the proposed approach outperforms the existing clustering algorithm owing to its low false positive rate, especially under leaf-on conditions. These findings suggest that the high-quality data from UAV LiDAR can effectively map the terrain and derive forest structural measures for single-tree inventories even under a partial leaf cover scenario.

Funder

Hardwood Tree Improvement and Regeneration Center, Purdue University

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3