Monitoring Onion Crop “Cipolla Rossa di Tropea Calabria IGP” Growth and Yield Response to Varying Nitrogen Fertilizer Application Rates Using UAV Imagery

Author:

Messina GaetanoORCID,Praticò SalvatoreORCID,Badagliacca GiuseppeORCID,Di Fazio SalvatoreORCID,Monti Michele,Modica GiuseppeORCID

Abstract

Remote sensing (RS) platforms such as unmanned aerial vehicles (UAVs) represent an essential source of information in precision agriculture (PA) as they are able to provide images on a daily basis and at a very high resolution. In this framework, this study aims to identify the optimal level of nitrogen (N)-based nutrients for improved productivity in an onion field of “Cipolla Rossa di Tropea” (Tropea red onion). Following an experiment that involved the arrangement of nine plots in the onion field in a randomized complete block design (RCBD), with three replications, three different levels of N fertilization were compared: N150 (150 kg N ha−1), N180 (180 kg N ha−1), and e N210 (210 kg N ha−1). The crop cycle was monitored using multispectral (MS) UAV imagery, producing vigor maps and taking into account the yield of data. The soil-adjusted vegetation index (SAVI) was used to monitor the vigor of the crop. In addition, the coverage’s class onion was spatially identified using geographical object-based image classification (GEOBIA), observing differences in SAVI values obtained in plots subjected to differentiated N fertilizer treatment. The information retrieved from the analysis of soil properties (electrical conductivity, ammonium and nitrate nitrogen), yield performance and mean SAVI index data from each field plot showed significant relationships between the different indicators investigated. A higher onion yield was evident in plot N180, in which SAVI values were higher based on the production data.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3