Drone RGB Images as a Reliable Information Source to Determine Legumes Establishment Success

Author:

Parra LorenaORCID,Mostaza-Colado DavidORCID,Yousfi Salima,Marin Jose F.ORCID,Mauri Pedro V.ORCID,Lloret JaimeORCID

Abstract

The use of drones in agriculture is becoming a valuable tool for crop monitoring. There are some critical moments for crop success; the establishment is one of those. In this paper, we present an initial approximation of a methodology that uses RGB images gathered from drones to evaluate the establishment success in legumes based on matrixes operations. Our aim is to provide a method that can be implemented in low-cost nodes with relatively low computational capacity. An index (B1/B2) is used for estimating the percentage of green biomass to evaluate the establishment success. In the study, we include three zones with different establishment success (high, regular, and low) and two species (chickpea and lentils). We evaluate data usability after applying aggregation techniques, which reduces the picture’s size to improve long-term storage. We test cell sizes from 1 to 10 pixels. This technique is tested with images gathered in production fields with intercropping at 4, 8, and 12 m relative height to find the optimal aggregation for each flying height. Our results indicate that images captured at 4 m with a cell size of 5, at 8 m with a cell size of 3, and 12 m without aggregation can be used to determine the establishment success. Comparing the storage requirements, the combination that minimises the data size while maintaining its usability is the image at 8 m with a cell size of 3. Finally, we show the use of generated information with an artificial neural network to classify the data. The dataset was split into a training dataset and a verification dataset. The classification of the verification dataset offered 83% of the cases as well classified. The proposed tool can be used in the future to compare the establishment success of different legume varieties or species.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Reference36 articles.

1. The Future of Food and Agriculture—Alternative Pathways to Rome,2018

2. Perspectives for Remote Sensing with Unmanned Aerial Vehicles in Precision Agriculture

3. A Review on UAV-Based Applications for Precision Agriculture

4. The influence of light wavelength on the germination performance of legumes;Vasilean;Ann. Univ. Dunarea Jos Galati Fascicle VI Food Technol.,2018

5. Efficacy of pre and post-emergence herbi-cides on weed control in chickpea (Cicer arietinum L.);Yadav;Indian J. Agric. Res.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3