Prototype Learning for Medical Time Series Classification via Human–Machine Collaboration

Author:

Xie Jia1,Wang Zhu1,Yu Zhiwen1,Ding Yasan1,Guo Bin1

Affiliation:

1. School of Computer Science, Northwestern Polytechnical University, Xi’an 710072, China

Abstract

Deep neural networks must address the dual challenge of delivering high-accuracy predictions and providing user-friendly explanations. While deep models are widely used in the field of time series modeling, deciphering the core principles that govern the models’ outputs remains a significant challenge. This is crucial for fostering the development of trusted models and facilitating domain expert validation, thereby empowering users and domain experts to utilize them confidently in high-risk decision-making contexts (e.g., decision-support systems in healthcare). In this work, we put forward a deep prototype learning model that supports interpretable and manipulable modeling and classification of medical time series (i.e., ECG signal). Specifically, we first optimize the representation of single heartbeat data by employing a bidirectional long short-term memory and attention mechanism, and then construct prototypes during the training phase. The final classification outcomes (i.e., normal sinus rhythm, atrial fibrillation, and other rhythm) are determined by comparing the input with the obtained prototypes. Moreover, the proposed model presents a human–machine collaboration mechanism, allowing domain experts to refine the prototypes by integrating their expertise to further enhance the model’s performance (contrary to the human-in-the-loop paradigm, where humans primarily act as supervisors or correctors, intervening when required, our approach focuses on a human–machine collaboration, wherein both parties engage as partners, enabling more fluid and integrated interactions). The experimental outcomes presented herein delineate that, within the realm of binary classification tasks—specifically distinguishing between normal sinus rhythm and atrial fibrillation—our proposed model, albeit registering marginally lower performance in comparison to certain established baseline models such as Convolutional Neural Networks (CNNs) and bidirectional long short-term memory with attention mechanisms (Bi-LSTMAttns), evidently surpasses other contemporary state-of-the-art prototype baseline models. Moreover, it demonstrates significantly enhanced performance relative to these prototype baseline models in the context of triple classification tasks, which encompass normal sinus rhythm, atrial fibrillation, and other rhythm classifications. The proposed model manifests a commendable prediction accuracy of 0.8414, coupled with macro precision, recall, and F1-score metrics of 0.8449, 0.8224, and 0.8235, respectively, achieving both high classification accuracy as well as good interpretability.

Funder

National Natural Science Foundation of China

Key Research and Development Program of Shandong Province

Scientific Research Plan of Shaanxi Education Department

Natural Science Basic Research Plan in Shaanxi Province of China

Publisher

MDPI AG

Reference71 articles.

1. Torres, D.G., and Qiu, H. (2018). Applying Recurrent Neural Networks for Multivariate Time Series Forecasting of Volatile Financial Data, KTH Royal Institute of Technology.

2. Using multivariate time series methods to estimate location and climate change effects on temperature readings employed in electricity demand simulation;Bowden;Aust. N. Z. J. Stat.,2017

3. Learning from heterogeneous temporal data in electronic health records;Zhao;J. Biomed. Inform.,2017

4. Interpretable deep models for ICU outcome prediction;Che;AMIA Annu. Symp. Proc.,2016

5. Machine learning for real-time prediction of complications in critical care: A retrospective study;Meyer;Lancet Respir. Med.,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ECG autoencoder based on low-rank attention;Scientific Reports;2024-06-04

2. Data-Agnostic Pivotal Instances Selection for Decision-Making Models;Lecture Notes in Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3