Global Random Graph Convolution Network for Hyperspectral Image Classification

Author:

Zhang Chaozi,Wang Jianli,Yao Kainan

Abstract

Machine learning and deep learning methods have been employed in the hyperspectral image (HSI) classification field. Of deep learning methods, convolution neural network (CNN) has been widely used and achieved promising results. However, CNN has its limitations in modeling sample relations. Graph convolution network (GCN) has been introduced to HSI classification due to its demonstrated ability in processing sample relations. Introducing GCN into HSI classification, the key issue is how to transform HSI, a typical euclidean data, into non-euclidean data. To address this problem, we propose a supervised framework called the Global Random Graph Convolution Network (GR-GCN). A novel method of constructing the graph is adopted for the network, where the graph is built by randomly sampling from the labeled data of each class. Using this technique, the size of the constructed graph is small, which can save computing resources, and we can obtain an enormous quantity of graphs, which also solves the problem of insufficient samples. Besides, the random combination of samples can make the generated graph more diverse and make the network more robust. We also use a neural network with trainable parameters, instead of artificial rules, to determine the adjacency matrix. An adjacency matrix obtained by a neural network is more flexible and stable, and it can better represent the relationship between nodes in a graph. We perform experiments on three benchmark datasets, and the results demonstrate that the GR-GCN performance is competitive with that of current state-of-the-art methods.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3