Abstract
Multi-temporal consistency of space-borne observations is an essential requirement for studying inter-annual changes and trends of satellite-derived biophysical products. The Proba-V mission, launched in 2013, was designed to ensure the continuity of the SPOT-VEGETATION long-term data record of global daily observations for land applications. The suitability of Proba-V to provide a temporally consistent data record is, however, potentially jeopardized by the orbital drift effect, which is known to induce spurious trends in time series. The aim of this paper is therefore to evaluate, for the first time, the orbital drift effect on Proba-V surface reflectance time series at 1 km resolution. In order to reliably identify such an effect, a two-fold approach is adopted. A simulation study is first defined to predict the temporal anomalies induced by the drifting illumination conditions. The numerical simulations are used as a benchmark to predict the impact of the drift for a range of sun-viewing angles. Real observations are then analyzed over a large set of land sites, globally spread and spanning a wide range of surface and environmental conditions. The surface anisotropy is characterized using the Ross-Thick Li-Sparse Reciprocal (RTLSR) Bidirectional Reflectance Distribution Function (BRDF) model. Both the simulation and the analysis of real observations consistently show that the orbital drift induces distinct and opposite trends in the two sides of the sensor across-track swath. Particularly, a positive drift is estimated in backward and a negative one in the forward scattering direction. When observations from all angular conditions are retained, these opposite trends largely compensate, with no remaining statistically significant drifts in time series of surface reflectances or Normalized Difference Vegetation Index (NDVI). As such, the Proba-V archive at 1 km resolution can be reliably used for inter-annual vegetation studies.
Subject
General Earth and Planetary Sciences
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献