Evaluation of Orbital Drift Effect on Proba-V Surface Reflectances Time Series

Author:

Niro Fabrizio

Abstract

Multi-temporal consistency of space-borne observations is an essential requirement for studying inter-annual changes and trends of satellite-derived biophysical products. The Proba-V mission, launched in 2013, was designed to ensure the continuity of the SPOT-VEGETATION long-term data record of global daily observations for land applications. The suitability of Proba-V to provide a temporally consistent data record is, however, potentially jeopardized by the orbital drift effect, which is known to induce spurious trends in time series. The aim of this paper is therefore to evaluate, for the first time, the orbital drift effect on Proba-V surface reflectance time series at 1 km resolution. In order to reliably identify such an effect, a two-fold approach is adopted. A simulation study is first defined to predict the temporal anomalies induced by the drifting illumination conditions. The numerical simulations are used as a benchmark to predict the impact of the drift for a range of sun-viewing angles. Real observations are then analyzed over a large set of land sites, globally spread and spanning a wide range of surface and environmental conditions. The surface anisotropy is characterized using the Ross-Thick Li-Sparse Reciprocal (RTLSR) Bidirectional Reflectance Distribution Function (BRDF) model. Both the simulation and the analysis of real observations consistently show that the orbital drift induces distinct and opposite trends in the two sides of the sensor across-track swath. Particularly, a positive drift is estimated in backward and a negative one in the forward scattering direction. When observations from all angular conditions are retained, these opposite trends largely compensate, with no remaining statistically significant drifts in time series of surface reflectances or Normalized Difference Vegetation Index (NDVI). As such, the Proba-V archive at 1 km resolution can be reliably used for inter-annual vegetation studies.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3