Prediction of Performance and Geometrical Parameters of Single-Phase Ejectors Using Artificial Neural Networks

Author:

Bencharif MehdiORCID,Croquer Sergio,Fang Yu,Poncet SébastienORCID,Nesreddine Hakim,Zid Said

Abstract

Ejectors have gained renewed interest in the last decades, especially in heat-driven refrigeration systems, to reduce the load of the compressor. Their performance is usually influenced by many factors, including the working fluid, operating conditions and basic geometrical parameters. Determining the relationships between these factors and accurately predicting ejector performance over a wide range of conditions remain challenging. The objective of this study is to develop fast and efficient models for the design and operation of ejectors using artificial neural networks. To this end, two models are built. The first one predicts the entrainment and limiting compression ratio given 12 input parameters, including the operating conditions and geometry. The second model predicts the optimal geometry given the desired performance and operating conditions. An experimental database of ejectors using five working fluids (R134a, R245fa, R141b, and R1234ze(E), R1233zd(E)) has been built for training and validation. The accuracy of the ANN models is assessed in terms of the linear coefficient of correlation (R) and the mean squared error (MSE). The obtained results after training for both cases show a maximum MSE of less than 10% and a regression coefficient (R) of, respectively, 0.99 and 0.96 when tested on new data. The two models have then a good generalization capacity and can be used for design purposes of future refrigeration systems.

Publisher

MDPI AG

Subject

Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3