Analysis of Net Erosion Using a Physics-Based Erosion Model for the Doam Dam Basin in Korea

Author:

Yeon MinhoORCID,Kim Seongwon,Shin HongjoonORCID,An Hyunuk,Lee Daeeop,Jung Sungho,Lee Giha

Abstract

In Korea, approximately 70% of the country is mountainous, with steep slopes and heavy rainfall in summer from June to September. Korea is classified as a high-risk country for soil erosion, and the rate of soil erosion is rapidly increasing. In particular, the operation of Doam dam was suspended in 2001 because of water quality issues due to severe soil erosion from the upstream areas. In spite of serious dam sediment problems in this basin, in-depth studies on the origin of sedimentation using physic-based models have not been conducted. This study aims to analyze the spatial distribution of net erosion during typhoon events using a spatially distributed physics-based erosion model and to improve the model based on a field survey. The spatially uniform erodibility constants of the surface flow detachment equation in the original erosion model were replaced by land use erodibility constants based on benchmarking experimental values to reflect the effect of land use on net erosion. The results of the upgraded model considering spatial erodibility show a significant increase in soil erosion in crop fields and bare land, unlike the simulation results before model improvement. The total erosion and deposition for Typhoon Maemi in 2003 were 36,689.0 and 9893.3 m3, respectively, while the total erosion and deposition for Typhoon Rusa in 2002 were 142,476.6 and 44,806.8 m3, respectively, despite about twice as much rainfall and 1.2 times as high rainfall intensity. However, there is a limitation in quantifying the sources of erosion in the study watershed, since direct comparison of the simulated net erosion with observed spatial information from aerial images, etc., is impossible due to nonperiodic image photographing. Therefore, continuous monitoring of not only sediment yield but also periodic spatial detection on erosion and deposition is critical for reducing data uncertainty and improving simulation accuracy.

Funder

KOREA HYDRO & NUCLEAR POWER CO., LTD

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3