Anodal Transcranial Direct Current Stimulation over the Right Dorsolateral Prefrontal Cortex Boosts Decision Making and Functional Impulsivity in Female Sports Referees

Author:

Ghayebzadeh Shahrouz1ORCID,Zardoshtian Shirin1,Amiri Ehsan1,Giboin Louis-Solal2ORCID,Machado Daniel Gomes da Silva3ORCID

Affiliation:

1. Faculty of Sport Sciences, Razi University, Kermanshah 6714414971, Iran

2. EFOR-CVO, 69003 Lyon, France

3. Research Group in Neuroscience of Human Movement (NeuroMove), Department of Physical Education, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil

Abstract

We investigated the effect of anodal transcranial direct current stimulation (tDCS) over the right dorsolateral prefrontal cortex (rDLPFC) on the sensitive decision making of female team sports referees. Twenty-four female referees voluntarily participated in this randomized, double-blind, crossover, and sham-controlled study. In three different sessions, participants received either anodal (a-tDCS; anode (+) over F4, cathode (−) over the supraorbital region (SO)), cathodal (c-tDCS; −F4/+SO), or sham tDCS (sh-tDCS) in a randomized and counterbalanced order. a-tDCS and c-tDCS were applied with 2 mA for 20 min. In sh-tDCS, the current was turned off after 30 s. Before and after tDCS, participants performed the computerized Iowa Gambling Task (IGT) and Go/No Go impulsivity (IMP) tests. Only a-tDCS improved IGT and IMP scores from pre to post. The delta (Δ = post–pre) analysis showed a significantly higher ΔIGT in a-tDCS compared to c-tDCS (p = 0.02). The ΔIMP was also significantly higher in a-tDCS compared to sh-tDCS (p = 0.01). Finally, the reaction time decreased significantly more in a-tDCS (p = 0.02) and sh-tDCS (p = 0.03) than in c-tDCS. The results suggest that the a-tDCS improved factors related to sensitive decision making in female team sports referees. a-tDCS might be used as an ergogenic aid to enhance decision performance in female team sports referees.

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3