Aerobic Exercise Delays Alzheimer’s Disease by Regulating Mitochondrial Proteostasis in the Cerebral Cortex and Hippocampus

Author:

Cui Kaiyin1,Li Chaoyang1,Fang Guoliang1

Affiliation:

1. China Institute of Sport Science, Beijing 100061, China

Abstract

In clinical practice, Alzheimer’s disease (AD), as one of the main neurodegenerative diseases globally, currently has no cure. Recently, the delaying and improving effects of physical exercise on AD have gradually been confirmed; however, the specific mechanism involved needs further clarification. (1) Objective: Explore the mechanism aerobic exercise plays in delaying AD by regulating mitochondrial proteostasis and provide new theoretical bases for improving and delaying AD through aerobic exercise in the future. (2) Methods: Male APP/PS1 mice were randomly divided into a normal group (NG, n = 20), activation group (AG, n = 20), and inhibition group (SG, n = 20). Then, the mice in each group were randomly divided into control group and exercise group (n = 10 mice each), yielding the normal control group (CNG), normal exercise group (ENG), active control group (CAG), active exercise group (EAG), inhibitive control group (CSG), and inhibitive exercise group (ESG). After adaptive training, the mice in the exercise groups were trained on an aerobic treadmill for 12 weeks; we conducted behavioral tests and sampled the results. Then, quantitative real-time PCR (Q-PCR) and Western blot analysis were performed. (3) Results: In the Morris water maze (MWM) test, the latency was significantly reduced and the number of platform crossings was significantly increased in the CAG and ENG compared with the CNG, while the result of the CSG was contrary to this. Compared with the ENG, latency was significantly reduced and the number of platform crossings was significantly increased in the EAG, while the opposite occurred for ESG. Compared with the CAG, the latency was significantly reduced and the number of platform crossings was significantly increased in the EAG, while the results for CSG were contrary. In the step-down test, compared with the CNG, the latency was significantly increased and the number of errors was significantly reduced in the CAG and ENG, respectively, while the results for CSG were contrary. Compared with the ENG, the latency was significantly increased and the number of errors was significantly reduced in the EAG, while the results for ESG were contrary. Compared with the CAG, the latency was significantly increased and the number of errors was significantly reduced in the EAG, while the results for CSG were contrary. Mitochondrial unfolded protein reactions (UPRmt), mitochondrial autophagy, and mitochondrial protein import levels in each group of mice were detected using Q-PCR and Western blot experiments. Compared with the CNG, the UPRmt and mitochondrial autophagy levels in the CAG and ENG were significantly increased and the mitochondrial protein import levels were significantly reduced, while the results for the CSG were contrary. Compared with the ENG, the UPRmt and mitochondrial autophagy levels in the EAG were significantly increased and the mitochondrial protein import levels were significantly reduced, while the results for ESG were contrary. Compared with the CAG, the UPRmt and mitochondrial autophagy levels in the EAG were significantly increased and the mitochondrial protein import levels were significantly reduced, while the results for CSG were contrary. (4) Conclusions: Aerobic exercise can improve cognitive function levels and delay the symptoms of AD in APP/PS1 mice by regulating mitochondrial proteostasis.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the China Institute of Sport Science

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3