Affiliation:
1. Institute of Hydroecology, Ministry of Water Resources & Chinese Academy of Sciences, Wuhan 430079, China
Abstract
Water quality is directly linked to drinking water safety for millions of people receiving the water. The Danjiangkou Reservoir is the main water source for the Middle Route of the South-to-North Water Diversion Project (MR-SNWDP), located in the vicinity of Henan and Hubei provinces in China. Aquatic microorganisms are key indicators of biologically assessing and monitoring the water quality of the reservoir as they are sensitive to environmental and water quality changes. This study aimed to investigate the spatiotemporal variations in bacterioplankton communities during wet (April) and dry (October) seasons at eight monitoring points in Hanku reservoir and five monitoring points in Danku reservoir. Each time point had three replicates, labeled as wet season Hanku (WH), wet season Danku (WD), dry season Hanku (DH), and dry season Danku (DD) of Danjiangkou Reservoir in 2021. High-throughput sequencing (Illumina PE250) of the 16S rRNA gene was performed, and alpha (ACE and Shannon) and beta (PCoA and NDMS) diversity indices were analyzed. The results showed that the dry season (DH and DD) had more diverse bacterioplankton communities compared to the wet season (WH and WD). Proteobacteria, Actinobacteria, and Firmicutes were the most abundant phyla, and Acinetobacter, Exiguobacterium, and Planomicrobium were abundant in the wet season, while polynucleobacter was abundant in the dry season. The functional prediction of metabolic pathways revealed six major functions including carbohydrate metabolism, membrane transport, amino acid metabolism, signal transduction, and energy metabolism. Redundancy analysis showed that environmental parameters greatly affected bacterioplankton diversity during the dry season compared to the wet season. The findings suggest that seasonality has a significant impact on bacterioplankton communities, and the dry season has more diverse communities influenced by environmental parameters. Further, the relatively high abundance of certain bacteria such as Acinetobacter deteriorated the water quality during the wet season compared to the dry season. Our findings have significant implications for water resource management in China, and other countries facing similar challenges. However, further investigations are required to elucidate the role of environmental parameters in influencing bacterioplankton diversity in order to devise potential strategies for improving water quality management in the reservoir.
Funder
National Key R&D Program of China
Major Science and Technology Projects of the Ministry of Water Resources
National Natural Science Foundation of China
Subject
Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics