Evaluation of Different SNP Analysis Software and Optimal Mining Process in Tree Species

Author:

Bu Mengjia123ORCID,Xu Mengxuan4,Tao Shentong4,Cui Peng1,He Bing1

Affiliation:

1. Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Area, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China

2. State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China

3. Shenzhen Research Institute of Henan University, Shenzhen 518000, China

4. Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China

Abstract

Single nucleotide polymorphism (SNP) is one of the most widely used molecular markers to help researchers understand the relationship between phenotypes and genotypes. SNP calling mainly consists of two steps, including read alignment and locus identification based on statistical models, and various software have been developed and applied in this issue. Meanwhile, in our study, very low agreement (<25%) was found among the prediction results generated by different software, which was much less consistent than expected. In order to obtain the optimal protocol of SNP mining in tree species, the algorithm principles of different alignment and SNP mining software were discussed in detail. And the prediction results were further validated based on in silico and experimental methods. In addition, hundreds of validated SNPs were provided along with some practical suggestions on program selection and accuracy improvement were provided, and we wish that these results could lay the foundation for the subsequent analysis of SNP mining.

Funder

Fundamental Research Funds for Central Non-profit Scientific Institution

Guangdong Basic and Applied Basic Research Foundation

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

Reference32 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3