Blind-Spot Collision Detection System for Commercial Vehicles Using Multi Deep CNN Architecture

Author:

Muzammel Muhammad,Yusoff Mohd Zuki,Saad Mohamad Naufal MohamadORCID,Sheikh Faryal,Awais Muhammad AhsanORCID

Abstract

Buses and heavy vehicles have more blind spots compared to cars and other road vehicles due to their large sizes. Therefore, accidents caused by these heavy vehicles are more fatal and result in severe injuries to other road users. These possible blind-spot collisions can be identified early using vision-based object detection approaches. Yet, the existing state-of-the-art vision-based object detection models rely heavily on a single feature descriptor for making decisions. In this research, the design of two convolutional neural networks (CNNs) based on high-level feature descriptors and their integration with faster R-CNN is proposed to detect blind-spot collisions for heavy vehicles. Moreover, a fusion approach is proposed to integrate two pre-trained networks (i.e., Resnet 50 and Resnet 101) for extracting high level features for blind-spot vehicle detection. The fusion of features significantly improves the performance of faster R-CNN and outperformed the existing state-of-the-art methods. Both approaches are validated on a self-recorded blind-spot vehicle detection dataset for buses and an online LISA dataset for vehicle detection. For both proposed approaches, a false detection rate (FDR) of 3.05% and 3.49% are obtained for the self recorded dataset, making these approaches suitable for real time applications.

Funder

Ministry of Education Malaysia

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A systematic literature review of driver behaviour in blind spot: Assessing risk and influencing factors for enhanced ergonomics in vehicle design;Ergonomics;2024-05-09

2. Accident Detection System Using Video Data;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2024

3. Object Detection, Recognition, and Tracking Algorithms for ADASs—A Study on Recent Trends;Sensors;2023-12-31

4. An Integrated Deep Learning-based Lane Departure Warning and Blind Spot Detection System: A Case Study for the Kayoola Buses;2023 First International Conference on the Advancements of Artificial Intelligence in African Context (AAIAC);2023-11-15

5. Zvýšení bezpečnosti v automobile: Přehled nových a stávajících senzorových technologií;Pošta, Telekomunikácie a Elektronický obchod;2023-05-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3