Numerical Study on the Hydrodynamic Characteristics of a Double-Row Floating Breakwater Composed of a Pontoon and an Airbag

Author:

Cheng XiaofeiORCID,Liu Chang,Zhang Qilong,He MingORCID,Gao Xifeng

Abstract

By adding a cylindrical airbag on the leeward side of a cuboid pontoon, a new-type double-row floating breakwater is designed to improve the wave attenuation performance, and its hydrodynamic characteristics are studied through numerical simulations. First, based on the smoothed particle hydrodynamics (SPH) method, a numerical model used to simulate the interaction between waves and moored floating bodies is built. The fluid motion is governed by the Navier–Stokes equations. The motion of the floating body is computed according to Newton’s second law. The modified dynamic boundary condition is employed to treat the solid boundary. The lumped-mass method is adopted to implement the mooring system. Then, two physical model experiments on waves interaction with cuboid and dual cylindrical floating pontoons are reproduced. By comparing the experimental and numerical wave transmission coefficients, wave reflection coefficients, response amplitude operators and mooring force, the reliability of the numerical model is validated. Finally, the validated numerical model is applied to study the influence of separation distance and wave parameters on the hydrodynamic characteristics of the double-row floating breakwater. The results indicate that the optimal separation distance between pontoon and airbag is 0.75 times the wavelength. At such separation distance and within the concerned 1–4 m wave heights and 4–7 s wave periods, the pontoon-airbag system presents better wave attenuation performance than a single pontoon. This improvement weakens as wave height increases while it strengthens as the wave period increases. In addition, the double-row floating breakwater is more effective in a high-wave regime than in a low-wave regime. In the case of short waves, attention should be paid to the stability and mooring reliability of the seaward pontoon, while in the case of long waves, care needs to be taken of the leeward airbag.

Funder

National Natural Science Foundation of China

Natural Science Foundation of the Jiangsu Higher Education Institutions of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3