Predicted Mapping of Seabed Sediments Based on MBES Backscatter and Bathymetric Data: A Case Study in Joseph Bonaparte Gulf, Australia, Using Random Forest Decision Tree

Author:

Xu Wei,Cheng HeqinORCID,Zheng Shuwei,Hu Hao

Abstract

Predictive mapping of seabed sediments based on multibeam bathymetric (BM), and backscatter (BS) data is effective for mapping the spatial distribution of the substrate. A robust modeling technique, the random forest decision tree (RFDT), was used to predict the seabed sediments in an area of the Joseph Bonaparte Gulf, Northern Australia, using the multibeam data and seabed sediment samples collected simultaneously. The results showed that: (1) Using multibeam bathymetry data in addition to multibeam backscatter data improves the prediction performance of the RFDT. In comparison to only multibeam backscatter data, the prediction performance achieved a ~10% improvement in sediment properties; it achieved a ~44.45% improvement of overall accuracy in sediment types, and a ~0.55 improvement in Kappa. (2) The underlying relationships between sediment properties and multibeam data show that there is an opposite non-linear correlation between sediment property-BS and sediment property-BM. For example, there is an obvious negative relationship between %mud-BS at incidence angles of 13° and 21°, but the relationship between %mud-BM is positive. As such, the RFDT is a useful and well-performing method in predicting the relationship between sediment properties and multibeam data and in predicting the distribution of sediment properties and types. However, the sediment prediction method in deep-water areas with high gravel content needs to be further evaluated.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3