Heave Compensation Dynamics for Offshore Drilling Operation

Author:

Kim Dave,Ku NamkugORCID

Abstract

In this study, dynamic response analysis of a heave compensation system for offshore drilling operations was conducted based on multibody dynamics. The efficiency of the heave compensation system was computed using simulation techniques and virtually confirmed before being applied to drilling operations. The heave compensation system was installed on a semi-submersible and comprises several interconnected bodies with various joints. Therefore, a dynamics kernel based on multibody dynamics was developed to perform dynamic response analysis. The recursive Newton–Euler formulation was adopted to construct the equations of motion for the multibody system. Functions of the developed dynamics kernel were verified by comparing them with those from other studies. Hydrostatic force, linearized hydrodynamic force, and pneumatic and hydraulic control forces were considered the external forces acting on the platform of the semi-submersible rig and the heave compensation system. The dynamic simulation was performed for the heave compensation system of the semi-submersible rig for drilling operations up to 3600 m water depth. From the results of the simulation, the efficiency of the heave compensation system was evaluated to be approximately 96.7%.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference17 articles.

1. A sparsity-oriented approach to the dynamic analysis and design of mechanical systems-part1&2;Orlandea;J. Eng. Ind. Trans. ASME,1977

2. Multibody Systems Handbook;Schiehlen,1990

3. Open Dynamics Engine v0.5 User Guide http://ode.org/ode-latest-userguide.pdf

4. RecurDyn V7R5 Release Notes https://pdfslide.net/documents/recurdyn-v7r5-release-notes-v-v-recurdyncatia-read-write-v-v-all-data-number.html

5. Nonlinear control of an active heave compensation system

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3