Abstract
This paper investigated the effects of using or not using potassium butyl xanthate (PBX) as a collector on the flotation kinetics of talc and chalcopyrite. By means of atomic force microscopy (AFM), Fourier-transform infrared spectroscopy (FTIR), a contact angle measuring instrument and particle size analyzer, the underlying causes behind the flotation rate changes of talc and chalcopyrite are analyzed. Experimental results showed that in collectorless flotation, the law of change in the flotation rate constant (k) of the two minerals over time is independent of pH, and k values of chalcopyrite are much smaller than those of talc. In the presence of PBX, the flotation speed of chalcopyrite greatly increases, and the k values of chalcopyrite are far larger than those of talc. This is mainly because the amount of xanthate adsorbed on the surface of chalcopyrite is large and the adsorption is in the form of chemisorption, while the adsorption of xanthate on the talcum surface is in very small amounts and in the form of physical adsorption. Simulation results indicated that the collectorless flotation of chalcopyrite conform to the classical first-order kinetics model and the Kelsall model, whereas that of talc only conform to the latter, which is due to the layered structure of talc. In the presence of the collector, talc flotation conforms to the two model, because talc has a higher floatability and particle morphology has less influence on the flotation rate.
Subject
Geology,Geotechnical Engineering and Engineering Geology
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献